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We investigate the effect of static mode degradation (SMD) on the power scaling of mJ-level Sagnac Yb-fiber ampli-
fiers. We find that SMD can be effectively suppressed by inserting a polarization-filtering device between two
rod-type fibers. Consequently, the resulting amplifier system exhibits improved combining efficiency and average
power, and it can deliver 240 fs pulses with 1.07 mJ energy and 107 W average power. This mJ femtosecond source
of hundred-watt average power is of particular importance for high-field science applications. © 2023 Optica

PublishingGroup

https://doi.org/10.1364/JOSAB.499313

1. INTRODUCTION

Yb-doped ultrafast fiber laser systems based on chirped-pulse
amplification (CPA) have achieved rapid progress in recent
years. Thanks to the development of double-clad Yb-fibers
with large mode area, a single-channel Yb-fiber CPA system can
generate femtosecond pulses with pulse energy up to 2.2 mJ
[1] or average power up to 1 kW [2]. Further scaling the aver-
age power and pulse energy spurred the development of two
techniques—coherent beam combining (CBC) and divided
pulse amplification (DPA), which involves spatially and tempo-
rally splitting pulses and recombining them after amplification.
For example, Stark et al. combined 16 channels with 128 pulse
replicas to achieve pulse energy up to 32 mJ [3]; Müller et al.
employed coherent combination of 12 fiber amplifiers to obtain
femtosecond pulses with the average power up to 10.4 kW [4].
It is essential for CBC and DPA to maintain the coherence of
pulse replicas, which usually involves a complex and expensive
electronic feedback system to actively control the phase of all
replicas.

On the other hand, generation of mJ-level femtosecond
pulses with hundred-watt-level average power can be achieved
via passively stabilized pulse combination. By proper design
of the amplification architecture, both CBC and DPA can be
realized without active electronic control elements [5]. Among
several feasible configurations, passive CBC based on Sagnac

interferometers is attractive because the two counterpropagat-
ing beams exhibit excellent resistance to thermal and mechanical
disturbance and, thus, maintain high combining efficiency at
large accumulated nonlinearities [6]. In 2012, Zaouter et al.
employed such a Sagnac interferometer to combine two rod-
type Yb-fiber chirped-pulse amplifiers; the resulting system
delivered 650 µJ at 96 kHz with an average power of 60 W
[7]. To further increase the pulse energy, Daniault et al. intro-
duced DPA into the Sagnac interferometer [8]; that is, the pulse
was temporally divided before the spatial split in the Sagnac
interferometer [9–12].

Figure 1(a) illustrates a typical Sagnac amplifier based on
Yb-fibers, in which the two fiber amplifiers are identical and
arranged with mirror symmetry. In this scenario, the opera-
tion of each channel is equivalent to an amplifier configured in
double-pass, as schematically shown in Fig. 1(b). Recently, Lupi
et al. demonstrated up to 120 W average power in a double-
pass amplifier, and further power scaling is limited by static
mode degradation (SMD) [13]. SMD arises from coupling
between fundamental mode and higher-order modes through
the thermo-optic nonlinear grating induced by two coun-
terpropagating optical beams inside the fiber amplifier. The
counterpropagating modes have the same frequency, and the
induced thermo-optic grating is static [14]. This is in contrast
with transverse mode instability (TMI) [15–18], in which the
thermo-optic grating is caused by two co-propagating beams
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Fig. 1. Schematic comparison between (a) Sagnac fiber amplifier
and (b) double-pass fiber amplifier.

that render a moving grating light and, thus, a dynamic power
exchange between the fundamental mode and higher-order
modes [19]. SMD in double-pass fiber amplifiers has been
explored and analyzed by several studies [12,20–22]. It has been
found that polarization plays an important role in the double-
pass configuration, as polarization rotation is needed to separate
input and output beam by polarizing beam splitter (PBS). We
observed unexpected nonlinear polarization rotation effect
associated with SMD, which caused additional energy transfer
from the main output to the discard output [20]. Fortunately,
inserting a polarizer filter between the first and second passes
in double-pass configuration can effectively suppress the SMD
effect [21].

Given that each fiber amplifier in a Sagnac loop may be
treated as a double-pass fiber amplifier, one may ask: what is
the effect of SMD on power scaling of a Sagnac fiber amplifier?
In the previous implementations of Sagnac fiber amplifiers,
polarizing devices (such as the PBS) are absent between the two
rod-type fiber amplifiers [23]. In this paper, we explore how the
SMD affects the power scalability of Sagnac interferometer and
combining efficiency. By introducing a polarization-filtering
device to mitigate SMD, our Sagnac Yb-fiber amplifier system
can generate 1.07 mJ, 240 fs pulses with 107 W average power.

2. EXPERIMENTAL SETUP

Figure 2 shows the experimental setup. Consisting of a pas-
sively mode-locked Yb-fiber oscillator, a stretcher, a pulse
picker, and two fiber preamplifiers, the all-fiber front end deliv-
ers a stretched pulse centered at 1033 nm with a duration of
600 ps. The pulse energy is 0.8µJ, and the repetition rate can be
adjusted from 100 kHz to 1 MHz by a pulse picker. An optical
isolator including by two PBSs (PBS1 and PBS2), a Faraday
rotator (FR1), and a half-wave plate (HWP1) is placed after the
front end. Two PBSs (PBS3 and PBS4) and two mirrors form
an unbalanced Mach–Zehnder interferometer, and the path
length difference between the two arms creates two orthogonally
polarized replicas temporarily separated by 1.8 ns. Adjusting
the angle of HWP2 changes the energy fraction distributed in
each replica. The following FR2 and HWP3 control the spatial
division ratio of forward pulses and rotate the polarization of
backward pulses.
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Fig. 2. Experimental setup of the passively combined divided-
pulse and Sagnac-type amplifier. PBS, polarizing beam splitter; FR,
Faraday rotator; HWP, half-wave plate; QWP, quarter-wave plate; HR,
high-reflection mirror; and DM, dichroic mirror.

Each temporal pulse replica is split by PBS5 into two beams
that propagate clockwise (CW) and counterclockwise (CCW)
through a Sagnac interferometer including two symmetri-
cally arranged rod-type Yb-doped fibers. Each fiber (NKT,
aeroGAIN-ROD-PM85) is 0.8 m long with a core diameter
of 85 µm. They each are pumped by a laser diode centered at
976 nm with a full power of 500 W. Two quarter-wave plates
(i.e., QWP1 and QWP2) convert the input-beam polarization
from linear to circular in order to reduce accumulated non-
linearities [24]. After the first amplification, both CW and
CCW beams become slightly elliptically polarized due to SMD.
Without correcting the polarization, stronger SMD during the
second amplification increases the polarization ellipticity of two
beams. As a result, an increased portion of recombined power
is directed to the exit port labeled as unpolarized output (green
arrow in Fig. 2). In this submission, we introduce another two
QWPs (i.e., QWP3 and QWP4) and a PBS (i.e., PBS6) between
two rod-type fibers. They constitute a polarization-filtering
device that restores circular polarization to the optical beam
prior to the second amplification and, therefore, effectively
suppress SMD-caused polarization degradation. After trav-
eling a circle through the Sagnac interferometer, the CW and
CCW beams are coherently combined and propagate back to
HWP3. At this point, the four spatiotemporal pulse replicas
are recombined into two temporal replicas, which return to the
Mach–Zehnder interferometer and are passively recombined
at PBS3. The part of all four spatiotemporal pulse replicas with
different phase, spectrum, or spatial distribution is removed at
PBS2 as the uncombined output, while the major part becomes
the combined output at PBS1. Finally, the combined pulses are
sent to a double-pass diffraction grating compressor including
two 1740 l/mm gratings.

3. EXPERIMENTAL RESULTS

A. Effect of Polarization Filter on Power Scaling

To explore the average power limitation of Sagnac fiber ampli-
fiers delivering mJ-level pulse energy, we operated the system at
a repetition rate of 150 kHz. The results in Figs. 3(a) and 3(b)
illustrate the effect of the polarization-filtering device on the
performance of our Sagnac fiber amplifier. In the figures, the red
diamonds, blue squares, and black circles represent the average
powers at the ports of combined output, uncombined output,
and unpolarized output, respectively. The total power denoted
as purple triangles corresponds to the power summation of all
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Fig. 3. Total power (purple triangles), combined power (red
diamonds), uncombined power (blue squares), and unpolarized
power (black circles) as a function of total pump power for two cases:
(a) without the polarization filter and (b) with the polarization filter.

the three outputs. Figure 3(a) shows the dependence of total
power, combined power, uncombined, and unpolarized power
on the total pump power as PBS6 was removed. As the pump
power increases, the growth of the combined power gradually
slows down while the uncombined power and the unpolarized
power both undergo accelerated increase. At 600 W pump
power, the combined power reaches a maximum value of 128 W,
and the average powers at the uncombined output and the
unpolarized output are 14 W and 38 W, respectively. Further
increasing the pump power causes continuous-wave lasing at
1033 nm, manifesting as an abrupt drop of the combined power
and an increase of the uncombined power and the unpolarized
power.

Figure 3(b) illustrates the results with the polarization filter
added into the system. While the total power and uncombined
power have negligible change, the unpolarized power is sub-
stantially suppressed to the level of uncombined output at low
pump power and reaches saturation at a pump power of 500 W.
Thanks to the mitigation of SMD, the power saved from the
unpolarized output mainly transfers to the combined output.
The new maximum of combined average power is 160 W
at a pump power of 700 W. For the pump power increasing
from 700 W to 740 W of pump power, the combined output
slightly decreases to 155 W, while the uncombined output
increases from 26 W to 36 W. We believe the power exchange
between the combined and uncombined output is mainly
due to SMD-induced profile change of counterpropagation
beams [14].

Combining efficiency is an important parameter to quan-
tify the performance of a coherent combination system. As
for Sagnac amplifier, Guichard et al. proposed the following
definition of combining efficiency [23]:

η1 =
Pcombined

Pcombined + Puncombined
, (1)

where Pcombined and Puncombined represent combined and
uncombined output powers, respectively. Apparently, the
unpolarized power is excluded from measuring the combining
efficiency. Indeed, the unpolarized power is associated with the
performance of spatial combination, and we propose to include
it in the definition of the combining efficiency:

η2 =
Pcombined

Pcombined + Puncombined + Punpolarized
, (2)
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Fig. 4. (a) η1 and (b) η2 as a function of total pump power with
(black) and without (red) polarization filter inside the amplifier system
for 150 kHz repetition rate.

where Punpolarized represents the output power at the unpolarized
output port.

To show the difference between these two definitions,
Figs. 4(a) and 4(b) plot η1 and η2 as a function of pump power,
respectively. In each figure, the black (red) curve shows the
results corresponding the polarization filter being removed
(added). As Fig. 4(a) shows, the combining efficiencyη1 changes
little under the two situations, both of which decrease from 95%
at a pump power of 70 W to 90% at a pump power of 600 W.
In contrast, the results in Fig. 4(b) show that the combining
efficiency of the new definitionη2 becomes much more sensitive
to the presence or absence of the polarization-filtering device.
With the polarization filter included in the system, η2 decreases
from 93% to 83% as the pump power increases from 70 W to
600 W [black curve in Fig. 4(b)]. Without the polarization filter,
η2 drops from 88% to 70% in the same range of pump power
variation [red curve in Fig. 4(b)].

B. Generation of Millijoule Pulses at 100 kHz
Repetition Rate

To generate mJ-level pulses with stable power and high beam
quality from the Sagnac amplifier, we operate the setup at a
lower repetition rate of 100 kHz with the polarization filtering
device incorporated into the system. As Fig. 5(a) shows, the
combined and uncombined outputs increase linearly with the
pump power and reach 117 W and 10 W at a pump power of
420 W, respectively. The increase of the unpolarized power slows
down at 7.5 W when the pump power exceeds 340 W indicating
suppression of the SMD-induced depolarization effect. The
combining efficiency η2 is shown in Fig. 5(b), which changes
from 92% to 87% as the pump power increases from 70 W to
420 W. The decrease of combining efficiency is mainly due to
phase mismatch among four spatiotemporal replicas caused
by nonlinearities [25,26]. When working at high gain level,
the gain of spatiotemporal pulse replicas decreases with time,
which introduces different nonlinear phase shifts to all four spa-
tiotemporal pulse replicas through self-phase modulation and
Kramers–Krönig coupling. The phase mismatch can be partly
compensated by adjusting the proportion of energy distributed
to each spatiotemporal replica, which is realized by changing the
angle of HWP2 and HWP3. The residual phase mismatch is
detrimental to the combination of pulse replicas.

The combined output before compression reaches 117 W at
the maximum pump power of 420 W. These amplified pulses
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Fig. 5. (a) Average power at different outputs and (b) combining
efficiency versus total pump power with polarization filter inside the
amplifier system for 100 kHz repetition rates. Red diamonds, blue
squares, and black circles represent combined, uncombined, and
unpolarized output power, respectively.
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Fig. 6. (a) Measured autocorrelation (red) and transform-limited
autocorrelation (black dashed) trace of the compressed pulse at 1.07 mJ
energy. (b) Spectrum of the pulse. (c) Long-term power stability of the
compressed pulse. (d) Horizontal (red) and vertical (blue) measured
beam quality factor (M 2) of the compressed output beam.

pass through a pair of diffraction gratings configured in double-
pass with an efficiency of 91%, which results in compressed
pulses with 107 W average power and 1.07 mJ pulse energy. The
black dashed curve in Fig. 6(a) represents the calculated auto-
correlation trace of the transform-limited pulse corresponding
the optical spectrum [Fig. 6(b)] of the compressed pulses. The
transform-limited pulse duration is 237 fs. The red curve in
Fig. 6(a) shows the measured autocorrelation trace with a full
width at half-maximum (FWHM) of 370 fs. The pulse duration
is estimated to be 240 fs assuming a pulse shape of hyperbolic-
secant. The oscilloscope trace was measured in the nanosecond
scale by a fast photodetector, and we did not observe noticeable
satellite pulses. The rapid modulation appearing in the optical
spectrum [Fig. 6(b)] is attributed to accumulated nonlinearities
during the amplification [27].

We also analyzed the beam quality and long-term power sta-
bility of the compressed pulses. The long-term power stability of
compressed output power at 107 W [Fig. 6(c)] is obtained by 3 h
measurement and the root mean square (RMS) of average power
is below 0.5% over 3 h, indicating excellent stability of passive

CBC. A power decrease of 2.8 W occurs during 3 h, which can
be mitigated by careful thermal management (e.g., better ther-
mal isolation and active cooling of optical components). The
M 2 measurement of the 1.07 mJ compressed pulses is depicted
in Fig. 6(d), and near diffraction limited values of M2

x = 1.11
and M 2

y = 1.27 are obtained. These values remain nearly the
same at all energy levels. The inset of Fig. 6(d) shows the far-field
beam profile, which has nearly Gaussian profile.

4. DISCUSSION AND CONCLUSION

In conclusion, we investigated the effect of SMD on aver-
age power limitation of passively combined Sagnac Yb-fiber
amplifiers. We show that adding a polarization filter inside the
Sagnac interferometer can mitigate SMD and increase both
the combined average power and the combining efficiency.
At 150 kHz repetition rate, our Sagnac Yb-fiber amplifier can
deliver amplified pulses with up to 160 W average power; at
100 kHz repetition rate, the system generates 1.07 mJ, 240 fs
pulses with 87% combining efficiency. Guichard et al. employed
four spatiotemporal replicas together with a Sagnac interfer-
ometer to produce 300 fs pulses with 1.07 mJ energy and 55 W
average power [23]. By mitigating the detrimental SMD effect,
our results represent a factor of 2 improvement in terms of
average power.

This femtosecond source with mJ-level pulse energy and
hundred-watt average power is of particular importance for
high-field science applications. Further energy scaling can be
achieved by increasing the number of pulse replicas, which is
limited by the nonlinear phase difference among pulse replicas
as a result of gain saturation effect. This can be compensated
by adjusting the energy distribution of these replicas prior to
amplification. It is possible to generate 2 mJ pulses using four
temporal replicas. Power scaling is limited by SMD rather than
TMI. It seems that an increased TMI threshold also leads to a
higher SMD threshold. Recently NKT reported generation of
pulses with 248 W average power in a Yb-doped rod-type fiber
of improved design for TMI suppression [28]. When these new
rod-type fibers are incorporated into the Sagnac interferometer,
generation of femtosecond pulses with mJ pulse energy and
>300 W average power is possible.
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