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S1. TIME-DEPENDENT DENSITY FUNCTIONAL THEORY

The time evolution of electron wave functions is governed by the time dependent Kohn-Sham

(TDKS) equations [1]:
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where velocity gauge is used and the external field appears in the kinetic term in the form of vector

potential A(𝑡).
The propagation of TDKS orbitals is implemented on the adiabatic basis 𝜙𝑛,k(r, 𝑡)��𝜓𝑖,k(r, 𝑡)〉 = ∑︁

𝑛

𝑐𝑖𝑛k(𝑡)
��𝜙𝑛,k(r, 𝑡)〉 , (S2)

where i and n denote the band index, k refers to the reciprocal momentum index and 𝑐𝑖𝑛k(𝑡)
the time dependent coefficients. The adiabatic basis is calculated on the fly at each ionic step by

diagonalizing the Hamiltonian:

𝐻k(r, 𝑡)
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where 𝜀𝑛,k(𝑡) is the eigenvalue. Thus, the charge density can be calculated with 𝑐𝑖𝑛k(𝑡) and

𝜙𝑛,k(r, 𝑡):
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where

𝑞𝑛,k(𝑡) =
∑︁
𝑖

|𝑐𝑖𝑛k(𝑡) |2, (S5)

is the population on the adiabatic basis.

For ions that are much heavier than electrons, their motions are treated classically on an aver-

aged potential energy surface determined by the electronic distribution according to the Ehrenfest
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theorem. The nuclear positions are updated following the Newton’s second law[2]:

𝑀𝛼

𝑑2R𝛼

𝑑𝑡2
=
∑︁
𝑖

⟨𝜓𝑖 |∇R𝛼
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2𝑚
(p − 𝑒

𝑐
A)2 +𝑉 (r, 𝑡)) |𝜓𝑖⟩ (S6)

where 𝑀𝛼 and R𝛼 are the mass and position of the 𝛼𝑡ℎ ion. Eq. (S1) and Eq. (S6) represents the

coupled electron-ion motion.

S2. COMPUTATIONAL DETAILS

Our TDDFT calculations are performed using the time-dependent ab initio package (TDAP-

QE) as implemented in Quantum Espresso using plane wave basis [3–5]. In order to couple the

two electron states we care about, a 2×2 supercell is constructed. The Brillouin zone is sampled by

9×9×1 Gamma-centered k mesh with an energy cutoff of 65 Ry. Ultrasoft pseudopotential (USPP)

combined with adiabatic local density approximation (LDA) is used to describe interactions be-

tween electrons and ions.

The applied laser electric field 𝐸 (𝑡) is described as a Gaussian-envelope function:

𝐸 (𝑡) = 𝐸0𝑐𝑜𝑠(2𝜋𝜔𝑡)𝑒𝑥𝑝
[
− (𝑡 − 𝑡0)2

2𝜎2

]
(S7)

where the width 𝜎 is 5 fs, and photon frequency 𝜔 is 0.42 fs−1. The laser field reaches the

maximum strength 𝐸0 = 0.073 V/Å at time 𝑡0 = 20 fs (see Fig. S1 the waveform). In Eq. (S1)

velocity gauge is used where the vector and scalar potential of the field 𝐸 (𝑡) are A(𝑡) =

−𝑐
∫ 𝑡
0
E(𝑡′)𝑑𝑡′ and Φ = 0.

Figure S1. Waveform of the applied electric field linearly polarized along the a-axis of the crystal cell.
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In the section of nonlinear phononics, we perform TDDFT-based molecular dynamics simula-

tions using the smallest tetragonal supercell that folds the M point (q = [0.5, 0, 0]) in the reciprocal

space of the hexagonal primitive cell to the Γ point, as is shown in Figs. S2 (a) and (b). We set

the starting temperature close to zero for the micro-ensemble simulation to eliminate the influence

of thermal phonons and the time step to 0.1 attosecond for the electrons and 0.1 femtosecond for

the ions.

Figure S2. (a) The primitive cell (grey) and the tetragonal computational cell (red) for the molecular

dynamics simulation. (b) The corresponding Brillouin zone folding from the tetragonal cell to the hexag-

onal cell.

S3. ELECTRON DYNAMICS UNDER THERMAL CONDITIONS

In theory, with the presence of only thermal phonons but no coherent LA(M) mode, the electron

dynamics should be comparable with the experimental measurements. However, in our work,

the simulated case is more or less to the other limit, i.e. large amplitude of coherent LA(M)

mode but negligible thermal phonons. In principle, the ab initio simulations could reproduce the

experimental condition by setting finite temperature, a large enough supercell, and simulating the

process for long enough time, to guarantee a complete thermal phonon distribution. However, this
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is not realistic at this point and thus beyond the scope of this work. An alternative approach

to capture the thermal phonon mediated inter-valley scattering dynamics relies on the solution of

the transport equation, with the electron-phonon or exciton-phonon coupling strength obtained

from first-principles calculation as its input parameters [6]. There, an exponential-style decay of

K valley occupation can be captured, which is similar to the experimental feature.

S4. EXCITONIC EFFECT

In principle, the excitonic effect could be fully included in the TDDFT equations, if the exact

exchange-correlation (xc) potential is used [7]. In recent years, the real-time (RT) TDDFT we used

in the present calculations has been demonstrated to be capable of describing the excitonic effects,

using a vector potential generalized from the long-range corrected (LRC) xc kernels [8]. This

approach accounts for the long-range screened electron-hole interaction and can reliably calculate

the exciton formation energy and can predict optical properties with much improved consistency

with various spectroscopic measurements [8].

Figure S3. (a) Upper panel: Imaginary part of the dielectric function calculated within TDDFT formalism

with (RT-LRC kernel, red) and without (RT-ALDA kernel, black) excitonic effect. Lower panel: Dielectric

function calculated with the many body GW method (blue curve), showing the first absorption peak is

at ∼ 2.2 eV. The orange dashed line represents the GW band gap calculated by K. Lin et al. in Ref. [9].

(b) The intervalley scattering dynamics calculated with and without inclusion of the excitonic effect. We

have normalized the electron occupation number to facilitate the direct comparison.
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To model the excitonic effect in our simulations, we integrate such xc vector potential into our

time-dependent ab initio package and compute the absorption spectrum of monolayer WSe2 for a

benchmark. We find in Fig. S3(a) that the inclusion of electron-hole interactions (red curve, upper

panel) shifts the absorption peak down to the correct position with respect to the GW calcula-

tion [9] (blue curve, lower panel) and also results in significant enhancement in the peak intensity

in comparison with the TDDFT calculation when the excitonic effects are not sufficiently included

(black dashed curve, upper panel).

To estimate the excitonic effect on the coherent-phonon-mediated intervalley scattering dynam-

ics, we simulate the temporal evolution of the photoexcited K-valley electrons with the updated

xc kernel, i.e. by taking into account the long-range electron-hole interaction. We find that the

LA(M) phonon mode induces a intervalley transition between the K and Q valley at ∼ 100 fs with

the presence of electron-hole interactions, shown by the red curve in Fig. S3(b). Furthermore, the

step-like scattering fashion is retained, which is the most distinguishable feature for our proposed

coherent-phonon-driven mechanism. By comparing these results (red curve in Fig. S3(b)) with

the original data (black curve in Fig. S3(b), the same as that in Fig. 2(b)), we conclude that the

excitonic effect did not change the main message of our work.

S5. RABI OSCILLATION

In Fig. S4, we show our TDDFT simulations on the electron dynamics up to 1 ps, where the

K-Q-K scattering, namely, a full Rabi oscillation cycle, is indeed observed.
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Figure S4. A full cycle of Rabi oscillation showing the K-to-Q transition and the inverted Q-to-K transi-

tion.

S6. MODE SELECTIVITY

For each mode at the M point, we carry out the same TDDFT-MD simulations as described for

the LA(M) mode in the main text and extract the excited-state phonon frequency from the Fourier

transform of the atomic trajectory in the photoexcited state projected onto the corresponding

phonon vibrational eigenvector. Comparison of phonon frequency in ground (𝜔𝑔) and excited

state (𝜔𝑒) has been listed in the following table:

where the index of the phonon mode refers to a purely energetic ordering of the phonon dispersion

at M point, as shown in Fig. S5(a). The frequency of LA(M) mode (index 3) experiences a

significant change compared with other modes, which indicate a strong coupling of the K state

with LA(M) mode.

In Figs. S5(b) and (c), we show the corresponding electron dynamics driven by the two coherent

optical modes as indicated by the colored rectangle in Fig. S5(a). While the lattice has initially

been displaced to a large amplitude along their vibrational eigenmode as is done for the LA(M)

mode, the electron occupation on both K and Q valley stays almost unchanged during the whole

time span.
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TABLE I. Ground and excited state phonon frequency

index 𝜔𝑔 (THz) 𝜔𝑒 (THz)

1 2.930 2.949

2 3.658 3.650

3 3.877 3.090

4 5.813 5.804

5 6.498 6.491

6 6.883 6.897

7 7.361 7.274

8 7.923 7.901

9 8.113 8.013

Figure S5. (a) Phonon dispersion of monolayer WSe2. (b)-(c) Scattering calculations with different

phonon modes as marked by the colored rectangle in (a). Inset illustrates their vibrational eigenmode.

S7. PERIOD OF EIGENVALUE EVOLUTION

Rewriting the time-dependent Hamiltonian as:

𝐻 = 𝐻0 + 𝐻𝑒𝑝 (𝑡) (S1)

where first term on the right-hand side refers to the unperturbed Hamiltonian and second term

the electron-phonon interaction which reserves only first order expansion on atomic displacement

of Coulomb interaction between electron and lattice given by the following form:

𝐻𝑒𝑝 (𝑡) =
∑︁
𝑗 ,𝑙

𝝁𝑙 (𝑡) · 𝑉 (𝒓𝑖 − 𝒍) (S2)
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Displacement of the lth atom should be a linear combination of all the normal mode, but herein

we consider only the contribution from LA(M) mode in line with our calculation strategy:

𝝁𝑙 (𝑡) ∼ 𝒆𝑞𝑒
𝑖(𝒒·𝒍−𝜔𝑡) , 𝒒 =

1

2
𝒃1 (S3)

where 𝒒 denotes the wavevector of the LA(M) mode which is half the reciprocal lattice vector 𝒃1.

Then we can obtain the simple property, combined with the orthogonality relation between lattice

vector and its reciprocal counterpart:

𝒂𝑖 · 𝒃 𝑗 = 2𝜋𝛿𝑖 𝑗 , 𝝁𝑙 (𝑡) = 𝝁𝑙+𝒂𝑖 (𝑡 +
𝑇

2
) (S4)

which implies that the two structures separated by half a phonon period T of LA(M) mode are

actually equivalent under a translational operation, as is shown in Fig. S6.

Figure S6. (a),(b) Crystal structure separated by half a phonon period.

Accordingly, we define a spatiotemporal symmetry operator for a better description of the

time-periodic system:

𝑋 = 𝑃𝒂1
· 𝜏2 (S5)

in which 𝑃𝒂1
stands for a spatial translation by 𝒂1 and 𝜏2 a temporal translation by half a phonon

period. From Eq. (S3) and Eq. (S4):

[𝑃2
𝒂1 , 𝐻 (𝑡)] = 0 , [𝑋, 𝐻 (𝑡)] = 0 (S6)

In this case, the instantaneous eigenmodes of 𝐻 (𝑡) are simultaneous eigenmodes of operator 𝑃𝒂1

and 𝑋. Also, since the two operators are unitary, their eigenvalues are roots of unity:

𝑃2
𝒂1 |𝐾 (𝑡)⟩ = 𝑒𝑖𝜙 |𝐾 (𝑡)⟩ (S7a)

𝑋 |𝐾 (𝑡)⟩ = 𝑒𝑖𝜑 |𝐾 (𝑡)⟩ (S7b)
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Noting that we can insert Eq. (S5) into Eq. (S7b) and then compare to Eq. (S7a):

𝑃𝒂1 |𝐾 (𝑡 + 𝑇
2
)⟩ = 𝑒𝑖𝜑 |𝐾 (𝑡)⟩ (S8a)

𝑃𝒂1 |𝐾 (𝑡)⟩ = 𝑒𝑖𝛾 |𝐾 (𝑡 + 𝑡

2
)⟩ (S8b)

Expanding the commutator in eq. (S6), one obtains:

𝑃𝒂1𝐻 (𝑡)𝑃−1
𝒂1 = 𝐻 (𝑡 + 𝑇

2
) (S9)

Imposing the spatial translational operator on the eigen equation satisfied by instantaneous

eigenstate |𝐾 (𝑡)⟩ and combine with Eq. (S9), we finally have:

𝐻 (𝑡 + 𝑇
2
) |𝐾 (𝑡 + 𝑇

2
)⟩ = 𝜀𝐾 (𝑡) |𝐾 (𝑡 + 𝑇

2
)⟩ (S10)

Since mode |𝐾 (𝑡 + 𝑇
2 )⟩ has originally been leveled as 𝜀𝐾 (𝑡 + 𝑇

2 ), the time evolution of eigenmode

clearly has a period at half that of the phonon mode, that is:

𝜀𝐾 (𝑡) = 𝜀𝐾 (𝑡 +
𝑇

2
) (S11)

S8. Q-VALLEY OCCUPATION FOR THE MODEL SYSTEM

For our two-level Hamiltonian, we write the state of the system as a power series [10]:

|𝜓(𝑡)⟩ = |𝜓(𝑡)⟩ (0) + |𝜓(𝑡)⟩ (1) + |𝜓(𝑡)⟩ (𝑅) , (S12)

with

|𝜓(𝑡)⟩ (0) = 𝑒− 𝑖ℏ
∫ 𝑡
0
𝑑𝑡 ′𝜀𝐾 (𝑡 ′) |𝐾 (𝑡)⟩, (S13)

|𝜓(𝑡)⟩ (1) = |𝑄(𝑡)⟩
∫ 𝑡

0
𝑑𝑡1𝑒

− 𝑖
ℏ

∫ 𝑡
𝑡1
𝑑𝑡𝜀𝑄 (𝑡 ′) ⟨ ¤𝑄(𝑡1) |𝐾 (𝑡1)⟩𝑒−

𝑖
ℏ

∫ 𝑡1
0
𝑑𝑡 ′𝜀𝐾 (𝑡 ′) , (S14)

|𝜓(𝑡)⟩ (𝑅) = 𝐶𝑅 (𝑡) |𝐾 (𝑡)⟩, (S15)

where |𝐾 (𝑡)⟩ and |𝑄(𝑡)⟩ are the real-time eigenstates of the model Hamiltonian with 𝜀𝐾 (t) and

𝜀𝑄 (t) being their eigenvalues, correspondingly. We set the system to start on the |𝐾 (0)⟩ state in

line with the condition under optical excitation. The subsequent evolution of wavefunction of the
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𝐾 state includes the usual adiabatic part (Eq. (S13)) and the residual higher order contributions

(Eq. (S15)). Here we have substituted all the complex expressions for high order corrections

by a single term C𝑅 (t) and the occupation number on 𝐾 state is obtained according to particle

conservation in our calculations. On the other hand, for population dynamics at the Q valley,

we truncate the expansion to the first order as in Eq. (S14) and the occupation number could be

calculated as the squared modulus of the coefficient.

S9. DEFORMATION POTENTIAL AND NONADIABATIC

COUPLING MATRIX ELEMENT

The deformation potential is defined as [11, 12]:

D = ⟨𝑄(𝑡) | 𝛿𝐻 (𝑡)
𝛿𝑑 (𝑡) |𝐾 (𝑡)⟩ (S16)

where the variation of the Hamiltonian is taken with respect to the distortion d(t) along the phonon

coordinate of LA(M) mode. For numerical calculation, the deformation potential is obtained using

a finite difference approach:

D2 =
(𝜀𝐾 − 𝜀) (𝜀𝑄 − 𝜀)

𝑑2
(S17)

where 𝜀 is the K valley energy upon finite distortion d. Generally, the absolute value of deformation

potential could be viewed as a constant during the lattice vibration and it is obtained from first

principle by calculating the energy variation at the moment denoted by the vertical dashed line in

Fig. S7(a). However, the sign is somewhat arbitrary, as in Eq. (S17) the square root operation,

and it depends on which direction is considered a positive displacement of the phonon mode. Here,

we would set D to follow the sign of phonon oscillation, that is, as indicated by the colored area

in Fig. S7(b), the deformation potential is positive when d(𝑡) is also positive and vice versa.

Next we deal with the calculation of nonadiabatic coupling matrix element. The definition of

deformation potential(Eq. (S16)), according to the chain rule, could be alternatively written as:

D =
1
¤𝑑 (𝑡)

⟨𝑄(𝑡) | 𝛿𝐻 (𝑡)
𝛿𝑡

|𝐾 (𝑡)⟩ (S18)

Make a time derivative on both side of the eigen equation satisfied by mode ⟨𝑄(𝑡) |, followed by an

inner product with |𝐾 (𝑡)⟩, we then have:

⟨ ¤𝑄(𝑡) |𝐾 (𝑡)⟩ =
⟨𝑄(𝑡) | 𝛿𝐻 (𝑡)

𝛿𝑡
|𝐾 (𝑡)⟩

𝜖𝑄 (𝑡) − 𝜖𝐾 (𝑡)
(S19)
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Figure S7. (a) Sign of deformation potential and phonon displacement. The area has been colored red

when both the deformation potential and phonon displacement become positive and blue when negative.

The dashed line indicate the time to calculate the absolute value of deformation potential. (b) Change of

nonadiabatic coupling matrix element with respect to deformation potential D. (c) Change of nonadia-

batic coupling matrix element with respect to phonon amplitude of LA(M) mode.

Comparing Eq. (S18) and Eq. (S19), we finally obtain the analytical expression of the matrix

element:

⟨ ¤𝑄(𝑡) |𝐾 (𝑡)⟩ = D ¤𝑑 (𝑡)
𝜖𝑄 (𝑡) − 𝜖𝐾 (𝑡)

(S20)

In Fig. S7(b) and S7(c), we provide the variation of it to the deformation potential and the phonon

amplitude of LA(M) mode. All the parameters involved in the model calculations have been listed

in the following table:

TABLE II. Parameters for model calculation

𝜀𝐾 (eV) 𝜀𝐾 (eV) D (eV/(𝐴 ·
√
𝑎𝑚𝑢)) A (𝐴 ·

√
𝑎𝑚𝑢) 𝜔 (THz)

1.91 1.81 0.154 1.72 3.09

S10. RESONANT EXCITATION OF A1 MODE

To investigate the dynamical response of LA(M) mode under an effective time-dependent driving

force from the A1 mode, we first estimate an achievable A1 mode amplitude by numerically solving

its equation of motion under an external THz laser field, which is then used as input for our

subsequent molecular dynamics simulations. For the infrared-active A1 mode, it could couple
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directly to the light field and the corresponding equation of motion could be written as [13, 14]:

¥𝑄𝐴1 + 𝜔2
0𝑄𝐴1 = 𝒁∗ · 𝑬0𝑐𝑜𝑠(𝜔𝑡)𝐹 (𝑡), (S21)

where 𝒁∗ is the mode effective charge vector and 𝑬0 is the peak electric field strength. 𝐹 (𝑡) =

exp(−𝑡2/(2𝜏2)) is the Gaussian shaped laser pulse, with a variance 𝜏2. While the A1 mode of

monolayer WSe2 has a small mode effective charge estimated to be |𝒁∗ |=0.101 𝑒/
√
𝑎𝑚𝑢, we note

from Eq. S21 that additional constraint for the A1 mode amplitude arises from the experimental

capacities for strong terahertz pulse generation. From literature, high fields up to 100 MV/cm

could be achieved in the low frequency regime (0.1-10 THz) using different techniques [15, 16]. To

quantify the effect of the laser field, we carry out field-strength-dependent calculations with other

laser field parameters, i.e., 𝜔 and 𝜏, fixed to 7.55 THz in resonance with phonon frequency and

0.25 ps respectively. In Fig. S8(a) we show that amplitude of A1 mode has a linear dependence on

the THz field strength, where 𝑄𝐴1 ∼ 2.2 Å·
√
𝑎𝑚𝑢 (mean-squared amplitudes 0.01 Å2, within the

melting limit) can be realized with a strong THz field strength close to 65 MV/cm.

Figure S8. (a) Dependence of the resonantly excited A1 mode amplitude 𝑄𝐴1 on the peak field strength

𝑬0. (b) Phonon lifetime distribution at the Γ point near room temperature, with color representing the

symmetry of each mode.

In our analysis above, we neglect the damping term of the coherent A1 mode. This is also

the case for our molecular dynamics simulations where the phonon motion has been accurately

described in time domain yet at the cost of reduced scattering phase space compared with the sta-

tistical methods, for example, the real-time Boltzmann transport equations (rt-BTE) [17]. While
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in practice the decay process is not negligible, the A1 mode, based on the anharmonic phonon-

phonon interactions, has a calculated lifetime of about 5 ps at room temperature (Fig. S8b), which

is consistent with the one of 4.5 ps detected by time-resolved transmission measurements[18] and

which could be longer at lower temperatures. Therefore, within the simulation time of ∼ 1 ps

where clear phonon down-conversion has been observed, one could assume the decay of the A1

mode amplitude into other channels is negligible.

S11. NONLINEAR PHONONICS

We construct the lattice potential describing the nonlinear interaction up to the leading third

order [19]:

𝑉 =
1

2
Ω2𝑄2

𝐴1
+ 1

2
(𝜔2 + 𝑔𝑄𝐴1)𝑄2

𝐿𝐴 (S22)

where Ω, 𝜔 characterize the frequency of 𝐴1 and LA(M) mode and g specifies the anharmonic

coupling constant.

From the lattice potential, we write the equation of motion for LA(M) mode as:

𝜕2𝑄𝐿𝐴

𝜕𝑡2
+ (𝜔2 + 𝑔𝑄𝐴1)𝑄𝐿𝐴 = 0 (S23)

where 𝑄𝐴1 oscillates coherently about the equilibrium position with normal mode frequency Ω and

amplitude A′ :

𝑄𝐴1 = 𝐴
′𝑐𝑜𝑠(Ω𝑡) (S24)

Under parametric resonance condition, we derive analytical solution for the equation as fitting

function for the molecular dynamics result:

𝑄𝑀 = 𝑎𝑒𝑠𝑡𝑐𝑜𝑠(𝜔 + 1

2
𝜂)𝑡 + 𝑏𝑒𝑠𝑡𝑠𝑖𝑛(𝜔 + 1

2
𝜂)𝑡 (S25)

where 𝜂 is the frequency difference between the coupling mode 𝜂 = Ω − 2𝜔. Besides, we have the

fitting parameter s directly related to the anharmonic coupling constant g:

𝑠2 =
1

4

[
(1
2

𝑔𝐴′

𝜔
)2 − 𝜂2

]
(S26)

Fig. S9(a) shows the fitting result from which we obtain the coupling constant of 4.47 𝑚𝑒𝑉/(𝐴 ·
√
𝑎𝑚𝑢)3. The value keeps in well consistency with the one of 4.80 𝑚𝑒𝑉/(𝐴 ·

√
𝑎𝑚𝑢)3 extracted
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Figure S9. (a) Fitting curve(red) of the molecule dynamics simulation result(black). (b) Total energy

as a function of the zone-boundary 𝑄𝐿𝐴 coordinate for several values of the 𝑄𝐴1 coordinate.(c) Atomic

motion in a 3 ps molecular dynamics simulation projected onto the vibrational eigenmodes.

from polynomial fitting of the energy curve, see Fig. S9(b). The generation of LA(M) mode via its

anharmonic interaction with 𝐴1 mode is highly selective guaranteed by the exponentially growing

amplitude. As is shown in Fig. S9(c), the LA(M) mode oscillates much more intensively than other

modes within a timescale of 3 ps. Besides, from Eq. S26 we could provide several avenues towards

the effective engineering of the LA(M) amplitude. For example, stronger LA(M) mode oscillation

with an amplitude up to 1.7 Å·
√
𝑎𝑚𝑢, as large as the one used to drive electronic transition, could

be obtained with an enhanced A1 mode amplitude to 3.3 Å·
√
𝑎𝑚𝑢, which according to Fig. S8

could be excited under a ∼90 MV/cm THz laser field. We do note that, although high fields up

to 100 MV/cm could be achieved in practice, such high peak field might induce unwanted effects.

Fortunately, it is proposed that the peak laser field required could be effectively reduced via the

delicate design of optical cavities which can enhance the parametric resonance between the A1

and LA(M) modes [20, 21]. Similar effect could also be obtained via the manipulation of the

anharmonic phonon-phonon coupling constant 𝑔.

S12. REALIZATION OF THE STEP-LIKE SCATTERING

Previous experiments have reported the displacive excitation of an A1 mode, which then decays

coherently into the acoustic branches [19]. The displacive excitation of coherent phonons (DECP)

can be well captured in our present TDDFT simulation. In Fig. S10 we show the dynamical

response of A1 mode after the resonant excitation of K valley electrons under a moderate laser field
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(0.62 mJ/cm2). This oscillatory lattice motion involves a shift of the equilibrium position, which

corresponds to a modification of the interactomic lattice potential along the A1 mode coordinate

as in the DECP mechanism. The subsequent down-conversion of the A1 mode into two acoustic

branches could also be observed in our simulation (red curve in the figure).

The DECP mechanism provides another possible avenue towards the generation of LA(M) mode

and the realization of the coherent-phonon-driven intervally scattering, where one laser pulse could

disturb both the electron and lattice degrees of freedom. In theory, a large amplitude A1 mode

can be displacively excited under a strong laser field, although in practice these carrier-based

mechanisms suffer from the ultrafast heating effects which could induce severe decoherence effect

and limit the coherent phonon amplitudes [22]. Therefore, the advances of THz lasers provide

better opportunities to resonantly excite A1 mode with large amplitude and then drive the LA(M)

mode as discussed for nonlinear phononics.

Figure S10. Displacive excitation of A1 mode (grey) and subsequent phonon down-conversions into the

LA(M) mode (red).
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Different from the carrier-based mechanism, the THz pulse for the resonant excitation of co-

herent phonons could hardly disturb the electron subsystem due to the energy mismatch. In our

simulations, we create an ideal condition where the coherent lattice oscillation along LA(M) mode

can be driven prior to the electronic excitation. In practice, this can possibly be realized by a

two-pulse process with the first THz field coupling to the infrared (IR) active phonon mode and

inducing subsequent phonon down-conversions, followed by the second pulse with much higher

energy to excite the K valley electrons. Meanwhile, we hope to motivate future experimental

exploration to test the limit of our predicted coherent-phonon-driven phenomena.
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Murray, S. Fahy, et al., Phys. Rev. Lett. 121, 125901 (2018).

[20] D. M. Juraschek, T. c. v. Neuman, J. Flick, and P. Narang, Phys. Rev. Res. 3, L032046 (2021).

[21] J. B. Curtis, M. H. Michael, and E. Demler, (2023), 10.48550/ARXIV.2301.01884.

[22] H. Padmanabhan, M. Poore, P. K. Kim, N. Z. Koocher, V. A. Stoica, D. Puggioni, H. (Hugo) Wang,

X. Shen, A. H. Reid, M. Gu, M. Wetherington, S. H. Lee, R. D. Schaller, Z. Mao, A. M. Lindenberg,

X. Wang, J. M. Rondinelli, R. D. Averitt, and V. Gopalan, Nat. Commun. 13, 1929 (2022).

http://dx.doi.org/10.1103/PhysRevResearch.3.023072
http://dx.doi.org/ 10.1021/acsnano.6b02253
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.125901
http://dx.doi.org/10.1103/PhysRevResearch.3.L032046
http://dx.doi.org/10.48550/ARXIV.2301.01884
http://dx.doi.org/10.1038/s41467-022-29545-5

	Coherent-phonon-driven intervalley scattering and Rabi oscillation in multivalley 2D materials   Supplemental Material
	Time-dependent density functional theory
	Computational details 
	Electron dynamics under thermal conditions 
	Excitonic effect 
	Rabi oscillation 
	Mode selectivity 
	Period of eigenvalue evolution 
	Q-valley occupation for the model system 
	Deformation potential and nonadiabatic coupling matrix element 
	resonant excitation of A1 mode 
	Nonlinear phononics 
	realization of the step-like scattering 
	References


